自闭症谱系障碍(ASD)是一种神经发育障碍,导致发生改变的行为,社会发展和通信模式。在过去几年中,自闭症患病率增加了两倍,现在有1分中有1个现在受到影响。鉴于传统诊断是一种冗长,劳动密集型的过程,已经对自动筛选自闭症的发展系统来说,已经提出了重大关注。韵律异常是自闭症的最明显的迹象,受影响的儿童展示言语特质,包括梯度,单调的语调,非典型音高和不规则语言压力模式。在这项工作中,我们展示了一套机器学习方法,以检测自闭症和神经典型(NT)儿童在家庭环境中捕获的自闭症语音音频中的自闭症。我们考虑了三种方法来检测儿童的自闭症语言:首先,在提取的音频特征(包括熔融频率跳跃系数)上培训的随机森林;二,卷积神经网络(CNNS)培训谱图;第三,微调Wav2Vec 2.0 - 基于最先进的基于变压器的ASR模型。我们在从斯坦福的猜测中培训我们的小说Todaset的小说数据集的分类器?移动游戏,一个应用程序,旨在在自然家庭环境中占有自闭症和神经典型的儿童的视频。随机森林分类器实现了70%的精度,微调Wav2Vec 2.0型号达到了77%的精度,CNN在将儿童的音频视为ASD或NT时,CNN可实现79%的准确性。我们的模型能够在具有不一致的录制质量选择的家庭音频剪辑上培训时预测自闭症状态,这可能更广泛地对现实世界的条件。这些结果表明,机器学习方法提供了在没有专门设备的语音中自动检测自闭症的承诺。
translated by 谷歌翻译
正式的自闭症诊断可以是效率低下和冗长的过程。尽管有证据表明早期的干预导致更好的治疗结果,但家庭可能会等待几个月或更长时间。数字技术检测与自闭症相关的行为的存在可以扩展到儿科诊断。这项工作旨在展示深度学习技术的可行性,用于从非结构化的家庭视频检测手动拍打作为验证模型和数字技术是否可以利用自闭症诊断的第一步。我们使用了自我刺激行为数据集(SSBD),其中包含75个手扑扑,头部敲打和儿童展示的旋转。从所有的手拍摄视频中,我们提取了100个扑扑的100个正和控制视频,每个持续时间为2到5秒。利用地标驱动方法和MobileNet V2的预训练层,我们的最高性能模型在评估5倍的交叉验证时,达到了84%(90%精度和80%召回)的测试F1得分。这项工作为开发精确的深层学习方法提供了对自闭症相关行为的活动检测的第一步。
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
Micro-CT images of the renal arteries of intact rat kidneys, which had their vasculature injected with the contrast agent polymer Microfil, were characterized. Measurement of inter-branch segment properties and the hierarchical structure of the vessel trees were computed by an automated algorithmic approach. The perfusion territories of the different kidneys, as well as the local diameters of the segmented vasculature were mapped onto the representative structures and visually explored. Various parameters were compared in order to outline key geometrical properties, properties which were shown to not have a wide range of inter-specimen variation. It is shown that the fractal scaling in non-symmetric branching reveals itself differently, than in symmetric branching (e.g., in the lung the mean bronchial diameters at each generation are closely related). Also, perfused tissue is shown to have very little inter-specimen variation and therefore could be used in future studies related to characterizing various disease states of tissues and organs based on vascular branching geometry.
translated by 谷歌翻译
Despite the recent progress in language generation models, their outputs may not always meet user expectations. In this work, we study whether informational feedback in natural language can be leveraged to improve generation quality and user preference alignment. To this end, we consider factual consistency in summarization, the quality that the summary should only contain information supported by the input documents, for user preference alignment. We collect a high-quality dataset, DeFacto, containing human demonstrations and informational feedback in natural language consisting of corrective instructions, edited summaries, and explanations with respect to the factual consistency of the summary. Using our dataset, we study two natural language generation tasks: 1) editing a summary using the human feedback, and 2) generating human feedback from the original summary. Using the two tasks, we further evaluate if models can automatically correct factual inconsistencies in generated summaries. We show that the human-edited summaries we collected are more factually consistent, and pre-trained language models can leverage our dataset to improve the factual consistency of original system-generated summaries in our proposed generation tasks. We make the DeFacto dataset publicly available at https://github.com/microsoft/DeFacto.
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
Free-text rationales (FTRs) follow how humans communicate by explaining reasoning processes via natural language. A number of recent works have studied how to improve language model (LM) generalization by using FTRs to teach LMs the correct reasoning processes behind correct task outputs. These prior works aim to learn from FTRs by appending them to the LM input or target output, but this may introduce an input distribution shift or conflict with the task objective, respectively. We propose KNIFE, which distills FTR knowledge from an FTR-augmented teacher LM (takes both task input and FTR) to a student LM (takes only task input), which is used for inference. Crucially, the teacher LM's forward computation has a bottleneck stage in which all of its FTR states are masked out, which pushes knowledge from the FTR states into the task input/output states. Then, FTR knowledge is distilled to the student LM by training its task input/output states to align with the teacher LM's. On two question answering datasets, we show that KNIFE significantly outperforms existing FTR learning methods, in both fully-supervised and low-resource settings.
translated by 谷歌翻译
As information extraction (IE) systems have grown more capable at whole-document extraction, the classic task of \emph{template filling} has seen renewed interest as a benchmark for evaluating them. In this position paper, we call into question the suitability of template filling for this purpose. We argue that the task demands definitive answers to thorny questions of \emph{event individuation} -- the problem of distinguishing distinct events -- about which even human experts disagree. We show through annotation studies and error analysis that this raises concerns about the usefulness of template filling evaluation metrics, the quality of datasets for the task, and the ability of models to learn it. Finally, we consider possible solutions.
translated by 谷歌翻译
Targeted syntactic evaluations of language models ask whether models show stable preferences for syntactically acceptable content over minimal-pair unacceptable inputs. Most targeted syntactic evaluation datasets ask models to make these judgements with just a single context-free sentence as input. This does not match language models' training regime, in which input sentences are always highly contextualized by the surrounding corpus. This mismatch raises an important question: how robust are models' syntactic judgements in different contexts? In this paper, we investigate the stability of language models' performance on targeted syntactic evaluations as we vary properties of the input context: the length of the context, the types of syntactic phenomena it contains, and whether or not there are violations of grammaticality. We find that model judgements are generally robust when placed in randomly sampled linguistic contexts. However, they are substantially unstable for contexts containing syntactic structures matching those in the critical test content. Among all tested models (GPT-2 and five variants of OPT), we significantly improve models' judgements by providing contexts with matching syntactic structures, and conversely significantly worsen them using unacceptable contexts with matching but violated syntactic structures. This effect is amplified by the length of the context, except for unrelated inputs. We show that these changes in model performance are not explainable by simple features matching the context and the test inputs, such as lexical overlap and dependency overlap. This sensitivity to highly specific syntactic features of the context can only be explained by the models' implicit in-context learning abilities.
translated by 谷歌翻译
In a wide variety of fields, analysis of images involves defining a region and measuring its inherent properties. Such measurements include a region's surface area, curvature, volume, average gray and/or color scale, and so on. Furthermore, the subsequent subdivision of these regions is sometimes performed. These subdivisions are then used to measure local information, at even finer scales. However, simple griding or manual editing methods are typically used to subdivide a region into smaller units. The resulting subdivisions can therefore either not relate well to the actual shape or property of the region being studied (i.e., gridding methods), or be time consuming and based on user subjectivity (i.e., manual methods). The method discussed in this work extracts subdivisional units based on a region's general shape information. We present the results of applying our method to the medical image analysis of nested regions-of-interest of myocardial wall, where the subdivisions are used to study temporal and/or spatial heterogeneity of myocardial perfusion. This method is of particular interest for creating subdivision regions-of-interest (SROIs) when no variable intensity or other criteria within a region need be used to separate a particular region into subunits.
translated by 谷歌翻译